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Abstract

High-frequency electro-mechanical impedance (EMI) signature is very sensitive to the local incipient damages in

structures. However, extensive information on the nature of damages may not be available via EMI technique in its

conventional non-model-based form. On the other hand, there is also little analytical work on the vibration modes of

complex structures at ultrasonic frequencies. In this paper, a coupled approach combining EMI technique and a

reverberation matrix method is proposed to quantitatively correlate damages in framed structures with high-frequency

signature for structural health monitoring. The structural members are modeled as Timoshenko beams for flexural motion

and as the classical longitudinal rods for axial motion. The PZT wafers, which are bonded to the beams, are also treated as

one-dimensional in an axial vibration. A shear lag model is adopted to simulate the interfacial bonding between PZT

patches and the host beam. An analytical expression for impedance (or admittance) related to response of the coupled

model of PZT patch–bonding layer–host frame system is derived for the first time. Comparison study is presented with

other established methods and theories. Based on this analysis, EMI signatures are extracted to identify the damages in

framed structures theoretically.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Two-dimensional (2D) or three-dimensional (3D) frames have been extensively used in various engineering
applications including civil infrastructures, large orbital space stations and the like [1–3]. The incipient damage
assessment of these crucial structures is an important means to prevent and mitigate the secondary disaster [4].
Thus, many methods such as vibration-based approaches have been proposed to detect damages in structures
[5]. However, the main limitation of these low-frequency techniques is that a relatively small number of the
first few modes are not sufficient to detect minor damages in structures [6]. The electro-mechanical impedance
(EMI) technique, which utilizes the impedance signature extracted from a PZT patch bonded onto the host
structure in the high-frequency range (typically 10–500 kHz [7]), is able to detect minor changes in structural
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a half-length of PZT patch
A cross-sectional area
d31 piezoelectric constant
D3 electric displacement
E3 electric potential
Ep, Es Young’s modulus of PZT patch and host

structures, respectively
Ēp complex Young’s modulus of PZT patch,

Ēp ¼ Epð1þ ZiÞ
f frequency
Ga, G shear rigidity of bonding layer and host

beam, respectively
hp, ha, hs thickness of piezoelectric patch, bond-

ing layers and host beam, respectively
i

ffiffiffiffiffiffiffi
�1
p

I moment of area
Ic electric current
l length of host structural member
lp length of PZT patch
M, Q bending moment and shear force, respec-

tively
t time variable
T1 longitudinal stress in PZT patch
uN axial displacement due to axial force in

host structures
up axial displacement

us axial displacement on the surface of the
host beam

V electric voltage
w transverse deflection
wp width of PZT patch
x, y, z Cartesian coordinates
Y, Z electric admittance and impedance of

PZT patch, respectively
Zs mechanical impedance of the beam
G shear lag parameter G ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðḠya=h̄
2

aÞðcþ aÞ=c
q

; where Ḡ ¼ Ga=Ep,

ya ¼ ha=hp, h̄a ¼ ha=a, a ¼ 1

d dielectric loss factors
�T33; �̄

T
33 dielectric constant and complex dielectric

constant, respectively �̄T33 ¼ �
T
33ð1� diÞ

ep axial strain of PZT patch
Z mechanical loss factors
k shear correction factor (p2/12)
m Poisson’s ratio of host structural member
rp, rs mass density of PZT patch and host

structures, respectively
t(x) transferred shear stress between PZT

patch and the host beam
j shear rotation
c stiffness ratio, c ¼ Eshs=ðEphpÞ

o circular frequency
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integrity at high-frequency, as has been validated by many experimental investigations [4,8–12]. These
vibration-based techniques have another limitation that the low-frequency measurement data is more prone to
contamination by ambient vibrational noise and it happens in the low-frequency range [12]. On the other
hand, the high-frequency EMI signature is usually isolated from the normal operating low-frequency
vibrations, for instance when a truck crosses a bridge [9].

In contrast to extensive experimental study using the EMI technique, limited theoretical work on its
modeling has been reported due to complexity of structures and difficulty in high-frequency analysis [13,14].
In fact, to date this technique has been unable to correlate changes in the signature to physical para-
meters of structures. Liang et al. [15], Zhou et al. [16] and Zagrai and Giurgiutiu [14,17] formulated analytical
solutions based on EMI spectrum and mechanical response of a simple structure. When damages are induced
in structures resulting in possible inhomogeneity of material properties, it is nonetheless very difficult to
extend their formulation directly especially for interpreting the nature of damages. In the high-frequency
range, approximate approaches such as the finite-element method (FEM) [7,18–24], spectral element
method [25] and Ritz method [26,27] have been employed to quantitatively identify structural
damages. However, various analytical difficulties do still exist. For example, FEM is usually sub-
jected to an inherent disadvantage of low efficiency in high-frequency analysis of structure because it
involves huge number of degree of freedom that requires huge number of finite elements and nodes
for predicting sufficiently accurate results. Recently, Lim et al. [27,28] developed a DSC-Ritz method
for high-frequency vibration analysis in which very accurate solutions for frequencies as high as the
thousandth modes can be obtained numerically. But, they only considered isotropic materials without
composite layers.
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A mixed analysis integrated with transfer matrix method (TMM) and joint coupling matrices (JCM) was
proposed by Nagem and Williams [1] who claimed the method very effective and accurate for dynamic
analysis of a framed structure. However, it still suffers from numerical instability and insufficient accuracy in
the high-frequency range especially for a structure containing some thin slender structural members as the
conventional TMM does [1,29]. This will be discussed in Section 5 in an example. Recently, a reverberation
matrix method (RMM) was first proposed by Pao et al. [2,3] to study the transient response of a plane truss
consisted of elastic members. This method can be employed to overcome the difficulty associated with high-
frequency analysis. It is extended here to investigate dynamics of a smart structure system.

The strain/stress transfer between PZT patches and host structures is physically implemented through
bonding adhesives. In order to develop a more accurate model to improve sensitivity of impedance signature
to damages in structure, the property of bonding layers should be considered. Furthermore, the inertia effect
of actuator also should be taken into account because EMI technique employs high-frequency electric field
with typical propagation wave length comparable to the length of actuator [30].

In this paper, a single PZT patch with free ends bonded onto a member of a framed structure is assumed in a
state of pure one-dimensional (1D) axial vibration [14,15] under a harmonic electric excitation. A shear lag
model [31,32] is employed to describe the properties of bonding layer. The structural members are modeled as
Timoshenko beams for flexural vibration and as classical longitudinal rods for axial vibration. Damage is
modeled as a reduction of Young’s modulus in the member [26,33]. A coupled approach combining the EMI
technique with RMM is proposed to relate the EMI signature with dynamics of the coupled structure system. It
is shown that EMI signature can be extracted at least theoretically to identify damages in the framed structures.

2. Analytical formulation of structural members

As shown in Fig. 1, a planar framed structure consists of many 1D members are connected by rigid joints.
The joints are assumed to be massless and the members are modeled as Timoshenko beams for flexural
vibration and as classical longitudinal rods for axial vibration. A piezoelectric patch is bonded on the surface
of an identified member as a sensor/actuator to detect structural damages. For a single structural member
without bonded PZT patch, the assumption of small deflection is adopted, and hence, flexural deformation
and axial deformation are uncoupled. Thus, the following relations hold:

qM

qx
�Qþ rsI

q2j
qt2
¼ 0; M ¼ �EsI

qj
qx
;

qQ

qx
¼ rsA

q2w
qt2

; Q ¼ kAG
qw

qx
� j

� �
,

qN

qx
¼ rsA

q2uN

qt2
; N ¼ EsA

quN

qx
, ð1Þ
2

l

4l

1 753(L)

4 6 8 10

9J K

X

Y

x53

y56

x56 y58

y5J

x5J5

x58

Fig. 1. A planar frame with one member bonded with a PZT patch and local coordinates.
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where some terms in the equations above are of reverse sign with respect to some texts due to different sign
convention. The steady-state solution under harmonic force can be written as

wðx; tÞ ¼ a2 e
k1x þ a3 e

k2x þ d2 e
�k1x þ d3 e

�k2x
� �

eiot,

jðx; tÞ ¼ gs1a2 e
k1x þ gs2a3 e

k2x � gs1d2 e
�k1x � gs2d3 e

�k2x
� �

eiot,

uN ¼ a1 e
iksx þ d1 e

�iksx
� �

eiot, ð2Þ

in which

k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

o2

kc2s
þ

o2

c20

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

kc2s
�

o2

c20

� �2

þ
4o2

c20r2s

s

2

vuuuut
if oo

ffiffiffi
k
p

cs=rs;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

kc2s
þ

o2

c20

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

kc2s
�

o2

c20

� �2

þ
4o2

c20r
2
s

s

2

vuuuut
i if o4

ffiffiffi
k
p

cs=r;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

kc2s
þ

o2

c20

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

kc2s
�

o2

c20

� �2

þ
4o2

c20r
2
s

s

2

vuuuut
i;

k2
s ¼ rso

2=Es; gsi ¼ ki þ
o2

kc2s ki

ði ¼ 1; 2Þ ð3Þ

and ai and di (i ¼ 1; 2; 3) are undetermined constants. For a structural member with surface-bonded PZT
wafer, a coupled system is considered, as shown in Fig. 2. The PZT patch is assumed in a state of 1D axial
strain and the bonding layer is in a state of pure shear based on the shear lag model [31,32]. Hence, we have the
following relations:

PZT patch : Ep

q2up

qx2
�

tðxÞ
hp

¼ rp

q2up

qt2
,

Bonding layer : t ¼
Ga

ha

ðup � usÞ; us ¼ uN �
hs

2

qw

qx
,

M Q

dx

M+dM

N N+dN

�

PZT patch 

Adhesive

Host structure Q+dQ�

�

Fig. 2. A structural member with surface-bonded PZT wafer.
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Host structural member:

qM

qx
þ tðxÞhs=2�Qþ rsI

q2j
qt2
¼ 0; M ¼ �EsI

qj
qx
;

qQ

qx
¼ rsA

q2w

qt2
,

Q ¼ kAG
qw

qx
� j

� �
;

qN

qx
þ tðxÞ ¼ rsA

q2uN

qt2
; N ¼ EsA

quN

qx
. ð4Þ

Defining k2
p ¼ rpo

2=Ep, k2
G ¼ rso

2=kG, uN ¼ ūN eiot, up ¼ ūp e
iot, j ¼ j̄ eiot and w ¼ w̄ eiot yields the

following four differential equations:

ūN ¼ 1�
ðcþ 1Þk2

p

cðG=aÞ2

" #
ūp þ

hs

2

dw̄

dx
�

cþ 1

cðG=aÞ2
d2ūp

dx2
,

dj̄
dx
¼

d2w̄

dx2
þ k2

Gw̄;
dw̄

dx
¼ a1

d6ūp

dx6
þ a2

d4ūp

dx4
þ a3

d2ūp

dx2
þ a4ūp,

d8ūp

dx8
þ A1

d6ūp

dx6
þ A2

d4ūp

dx4
þ A3

d2ūp

dx2
þ A4ūp ¼ 0, ð5Þ

where

a1 ¼
hs

6k2
s

cþ 1

cðG=aÞ2
; a2 ¼ �

2hs

3ck2
s

�
hs

6k2
s

þ
hs

6k2
s

ðk2
p þ k2

s þ k2
GÞ

cþ 1

cðG=aÞ2
,

a3 ¼
hs

k2
s

�
2

3c
k2

p �
k2

s

6
�

k2
G

6
�

k2
G

6c
þ

k2
Gk2

p

6
þ

k2
Gk2

s

6
þ

k2
s k2

p

6

 !
cþ 1

cðG=aÞ2

" #
,

a4 ¼ �
hsk

2
G

6k2
s

k2
p=cþ k2

s �
ðcþ 1Þk2

s k2
p

cðG=aÞ2

" #
ð6Þ

and

A1 ¼ �
4

cþ 1
ðG=aÞ2 �

c
cþ 1

ðG=aÞ2 þ k2
p þ k2

G þ 2k2
s ,

A2 ¼ k4
s þ 2k2

s k2
p þ 2k2

s k2
G þ k2

Gk2
p �

12k2
s

h2
s

� ð4k2
s þ 4k2

p þ k2
GÞ

1

cþ 1
ðG=aÞ2,

� ð2k2
s þ k2

GÞ
c

cþ 1
ðG=aÞ2,

A3 ¼ � k2
Gk2

p þ 4k2
s k2

p þ k2
s k2

G �
12k2

s

h2
s

 !
1

cþ 1
ðG=aÞ2,

� k4
s þ 2k2

s k2
G �

12k2
s

h2
s

 !
c

cþ 1
ðG=aÞ2 þ 2k2

Gk2
pk2

s þ k4
s k2

p þ k4
s k2

G �
12k2

s

h2
s

k2
p �

12k4
s

h2
s

,

A4 ¼ k2
s k2

G �
12k2

s

h2
s

 !
�k2

p

1

cþ 1
ðG=aÞ2 � k2

s

c
cþ 1

ðG=aÞ2 þ k2
s k2

p

� �
. ð7Þ

From Eq. (5), we can obtain

up ¼ aTXa þ dTXd

� �
eiot,

j ¼ aT � diag li½ � �Xa þ dT � diag li½ � �Xd

� �
eiot,

w ¼ aT � diag gi

� �
�Xa þ dT � diag �gi

� �
�Xd

� �
eiot,

uN ¼ aT � diag Zi

� �
�Xa þ dT � diag Zi

� �
�Xd

� �
eiot, ð8Þ
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where

a ¼ a1 a2 a3 a4

� �T
; d ¼ d1 d2 d3 d4

� �T
,

Xa ¼ eb1x eb2x eb3x eb4x
� �T

; Xd ¼ e�b1x e�b2x e�b3x e�b4x
� �T

,

gi ¼ a1b
5
i þ a2b

3
i þ a3bi þ a4=bi; li ¼ gibi þ gik

2
G=bi,

Zi ¼ 1�
ðcþ 1Þk2

p

cðG=aÞ2
�
ðcþ 1Þ

cðG=aÞ2
b2i þ

hs

2
gibi ði ¼ 1; 2; 3; 4Þ, ð9Þ

and diag[ � ] signifies a diagonal matrix, ai and di (i ¼ 1; 2; 3; 4) are undetermined constants, and bi are the
characteristic roots of the fourth equation in Eq. (5). In RMM (to be discussed later), bi should be arranged
such that aTXa corresponds to the arriving waves while dTXd to the departing waves. This is particularly
important to avoid numerical instability in the high-frequency range.
3. Dynamics of framed structures

In RMM, a major step is to set up two local coordinate systems for each homogeneous member as shown in
Figs. 1 and 3. Having derived the transverse deflection, rotation and axial displacement for each member as in
Eqs. (2) and (8), the bending moment, shear force and axial force can be obtained according to Eqs. (1) and
(4). At a typical joint L, the balance of force and compatibility of motion must be considered. Thus, three
equilibrium equations and 3(mL

�1) compatibility relations can be obtained (mL is the number of members
connected to joint L) which lead to the local scattering matrix of order 3mL

� 3mL at joint L. The detailed
procedure is well established [2,3] for joints connected with elastic members and is omitted here for brevity. In
the following, however, local scattering matrices at joints linked with smart members are derived as an
illustrative example. As shown in Fig. 1, a single PZT patch is assumed to be bonded to the JK member and
the following relations should be satisfied:

Compatibility conditions:

wJ5 þ wJK ¼ 0; jJ5 ¼ jJK ; uJ5
N þ uJK

N ¼ 0.

Balance conditions:

MJ5 þMJK ¼ 0; QJ5 ¼ QJK ; NJ5 ¼ NJK ,

at xJ5 ¼ xJK ¼ 0.

Boundary conditions at the end of PZT patch ½31�:

�p ¼
qup

qx
¼ L ¼ d31E3 ¼ d31V=hp; at xJK ¼ 0. ð10Þ
F0

4

X3

X2

X1

3

X

Y

i

yij

xij xji j

yji

1

2

Fig. 3. A portal frame and local coordinates.
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Substituting the expressions for all physical variables obtained from Eqs. (1), (2), (4) and (8) into Eq. (10)
yield:

AJaJ ¼ BJdJ þQ0, (11)

where AJ and BJ can be readily derived from Eq. (10), and

Q0 ¼ 0 0 0 0 0 0 L
� �T

,

aJ ¼ aJ5
1 aJ5

2 aJ5
3 aJK

1 aJK
2 aJK

3 aJK
4

h iT
,

dJ ¼ dJ5
1 dJ5

2 dJ5
3 dJK

1 dJK
2 dJK

3 dJK
4

h iT
.

Eq. (11) can be written as

dJ ¼ SJaJ � ðBJÞ
�1Q0, (12)

where SJ
¼ (BJ)�1AJ is the local scattering matrix of order 7� 7 at joint J. Denoting m and n the total

numbers of structural members and joints in the frame, respectively, it is obvious that
Pn

L¼1mL ¼ 2m.
Combining the 6m+2 equations for all joints (the additional two equations are due to the boundary
conditions at two ends of the piezoelectric patch), we arrive at a global scattering relation as follows:

d ¼ SaþQ, (13)

where d ¼ ½ðd1ÞT; ðd2ÞT; . . . ; ðdn�1Þ
T; ðdnÞ

T
�T is the global vector associated with departing waves, and a ¼

½ða1ÞT; ða2ÞT; . . . ; ðan�1Þ
T; ðanÞ

T
�T is the global vector associated with arriving waves. The global scattering

matrix is

S ¼

S1
6�6 . . . 06�7 06�7 . . . 06�6

..

. . .
. ..

. ..
. . .

. ..
.

07�6 � � � SJ
7�7 07�7 � � � 07�6

07�6 � � � 07�7 SK
7�7 � � � 07�6

..

. . .
. ..

. ..
. . .

. ..
.

06�6 � � � 06�7 06�7
..
.

Sn
6�6

2
6666666666664

3
7777777777775

(14)

and the global source vector is

Q ¼ ð06�1Þ
T
� � � ½�ðBJÞ

�1Q0�
T
7�1 ½�ðB

K Þ
�1Q0�

T
7�1 � � � ð06�1Þ

T
h iT

. (15)

However, the 6m+2 equations above are inadequate to solve for the total 12m+4 unknowns in the two
vectors d and a. Thus, additional relations must be determined.

For each member, two different local coordinate systems have been employed. With a unique physical
reality, solutions of the two systems should predict identical results. For example, at a certain point xJK ¼

lJK
� xJK of the member with bonded PZT patch, we have

uJK ðxJK Þ ¼ �uJK ðlJK
� xJK Þ (16)

which gives

aJK
1 ¼ �dKJ

1 e�b1lJK
; aJK

2 ¼ �dKJ
2 e�b2lJK

; aJK
3 ¼ �dKJ

3 e�b3lJK
; aJK

4 ¼ �dKJ
4 e�b3lJK

. (17)

The above equation can be written as

aJK ¼ PJKdKJ , (18)
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where

PJK ¼

�e�b1lJK
0 0 0

0 �e�b2lJK
0 0

0 0 �e�b3lJK
0

0 0 0 �e�b4lJK

2
66664

3
77775. (19)

Eqs. (17) and (18) present the relations connecting the arriving waves in one local coordinates to the
departing waves in another local coordinates for a specific member and they are called the phase relations
[2,3]. In order to avoid numerical instability as encountered in TMM, it should be emphasized that the phase
relations should contain no exponential functions with large positive indices in the phase matrix PJK. This is a
crucial point for proper application of RMM in dynamic analysis of structures.

Some new global vectors d̄ are introduced here, for example, d̄ at joint J can be expressed as follows:

d̄
J
¼ d5J

1 d5J
2 d5J

3 dKJ
1 dKJ

2 dKJ
3 dKJ

4

h iT
. (20)

The local vectors at all joints can be assembled to a single global matrix d̄ which contains the same elements
as the vector d but sequenced in a different order. The two vectors thus can be related through a permutation
matrix U as

d̄ ¼ Ud, (21)

where U is a (6m+2)� (6m+2) square matrix which contains one unit element in each row as well as one unit
element in each column. Notice that the phase relations are valid for all structural members without and with
PZT patches. Hence, these equations can be combined into a global phase shift relation as follows:

a ¼ Pd̄. (22)

From Eqs. (13), (21) and (22), we obtain:

d ¼ RdþQ; R ¼ SPU, (23)

where R is called the reverberation ray matrix [2,3]. It is then obtained that:

d ¼ ðI� RÞ�1Q; a ¼ S�1ðd�QÞ ¼ S�1½ðI� RÞ�1 � I�Q. (24)

Hence, all undetermined constants in Eqs. (2) and (8) can be solved for from Eq. (24).
4. Damage detection using EMI signature

In this section, we try to relate the EMI signature with dynamic characteristics of the coupled structure
system analyzed here. As mentioned above, the PZT patch is considered as a thin bar undergoing only axial
motion and is bonded to the JK member as shown in Fig. 1. Thus, the corresponding constitutive equations
are [14,15,19,24]:

�p ¼
T1

Ēp

þ d31E3; D3 ¼ �̄
T
33E3 þ d31T1. (25)

The electric current passing through PZT patch can be determined from the electric displacement as

Ic ¼ io
ZZ

D3 dxdy ¼ iowplp �̄
T
33 � d2

31Ēp

� �
E3 þ iowpd31Ēp u

lp
p � u0

p

	 

, (26)

where u
lp
p and u0

p represent the axial displacement on the right and left sides of PZT patch in the corresponding
local coordinate, respectively. It is known that up is proportional to the electric voltage V according to
Eqs. (10), (11), (15) and (24). Without loss of generality, a unit voltage is thus assumed. Substituting
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the expression for up in Eq. (8) into Eq. (26) and then using the phase relations again yields the electric
admittance as

Y ¼ Ic=V ¼ iowplp �̄
T
33 � d2

31Ēp

� �
=hp þ iowpd31Ēp

X4
j¼1

ð�aKJ
j � aJK

j � dJK
j � dKJ

j Þ

 !
. (27)

The electric impedance Z can be expressed as the inverse of electric admittance. From Eq. (27), the first term
on right-hand side is only related to the PZT patch while the second term involves parameters of the PZT
patch, the host member of the frame as well as the bonding layer. In fact, the second term indicates the
resonance condition of coupled PZT patch–bond layer–host structure system in the frequency domain. If
damage is induced, the EMI of the coupled structural system will change accordingly.

Many types of non-parametric indices such as root mean square deviation (RMSD), mean absolute
percentage deviation (MAPD), covariance (Cov) and correlation coefficient (CC) have been employed
to quantify changes in the EMI signature [34]. For example, the Cov index evaluates the averaged product
of deviations of admittance signature data points from their respective means. Mathematically, it is defined
as [34]

Cov ¼
1

N

XN

i¼1

ðxi � x̄Þðyi � ȳÞ; (28)

where x̄ and ȳ are the mean values of two sets of admittance signature. Cov is a measure of the relationship
between two signatures and it is used to determine whether two ranges of data move together. When the peak
of one signature is in phase with the peak of the other signature, the Cov index is positive. On the contrary, the
Cov is negative when the trough of one signature is in phase with the peak of the other. When both signatures
are unrelated, the Cov is nearly zero. Thus damages can be characterized because the Cov is closer to zero or
becomes negative for large deviation between signatures.

5. Numerical computation and discussion

Consider first a portal frame subjected to a harmonic mechanical force at joint 2 as shown in Fig. 3. The
geometric parameters and material constants of the frame are listed in Table 1. The Euler–Bernoulli beam
theory (EBT) and Timoshenko beam theory (TBT) for flexural vibration are adopted for comparison. The
mixed analysis method referred as TMM–JCM [1] is also employed to investigate dynamics of this portal
frame for comparison. The local coordinates X1, X2 and X3 depicted in Fig. 3 are set up for this mixed analysis.
We define the following quantity at joint 2 (Y direction):

Zs ¼ F 0= _w
23; _w23 ¼ dw23=dt (29)

which is known as the mechanical impedance, a mechanical counterpart of electric impedance. Zs is employed
to study dynamics of the portal frame. Under harmonic mechanical force, we have

Zs ¼ F0=ðiow23Þ. (30)

Clearly, the transverse displacement of members 2–3, w23, reflects the dynamic property of the structure and
hence the mechanical impedance.

A comparison between EBT and TBT in Fig. 4 indicates a certain deviation of peaks between the two curves
for frequency higher than 1.5 kHz. Because shear deformation is neglected in the EBT, the global stiffness of
an Euler–Bernoulli beam is greater than that of a Timoshenko beam. Thus, the peaks of conductance (the real
Table 1

Material constants and geometric parameters of a host structural member

l (mm) m hs (mm) Es (N/m2) rs (kg/m
3) Damping ratio

200 0.3 10 20E+10 7750 0.01
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part of admittance) predicted by TBT shift leftwards as shown in Fig. 4(a). It is noted that excited shear
vibration modes only can be captured by TBT. For example, in the frequency range of 30–50 kHz, six peaks
can be found by TBT as compared to only five peaks predicted by EBT. Generally speaking, the result of EBT
differs considerably from that of TBT as shown in Fig. 4(b). However, in the vicinity of 38 kHz the two curves
can hardly be distinguished because this corresponds to a pure axial mode and in this analysis axial vibration
is governed by an identical equation regardless of different beam bending theories.

Based on EBT, a comparison between RMM and TMM–JCM is conducted as shown in Fig. 5. It can be
seen that the two methods agree with each other very well in the low-frequency range. However, when the
frequency becomes higher, numerical instability appears in TMM–JCM while the method of RRM still
behaves quite well. A recent work of the authors on a single Euler–Bernoulli beam indicated similar
conclusion [35]. A similar comparison based on TBT is described in Fig. 6. It can be seen that the two curves
can hardly be distinguished in the range of 1–10 kHz. However, for a portal frame with thin slender members
(l ¼ 600mm while the other parameters are invariant), numerical inaccuracy can be observed in Fig. 6(b) for
the method in Ref. [1]. RMM still performs well even in the high-frequency range for the structure with slender
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members. A close scrutiny in Figs. 5 and 6 finds an interesting phenomenon that numerical instability
disappears in the vicinity of an axial mode frequency for which TMM–JCM agrees well with RMM. It is
theoretically correct that TMM is able to deal with axial motion no matter how high the frequency is [36].

It is well known that measurement of mechanical impedance is very difficult for a structural system. On the
other hand, it is rather easier to obtain electric impedance using a piezoelectric wafer. In this paper, a
piezoelectric wafer is bonded onto the structural member and hence the electric impedance will vary with the
dynamic property of host structure, as shown in Eq. (27). We next consider a more complicated framed
structure where one member is surface-bonded with a PZT patch as shown in Fig. 1. The present coupled
approach is now employed to relate the EMI signature with damage in the structural system. The geometric
parameters and material constants of the elastic member and the PZT patch are listed in Tables 1 and 2,
respectively. For convenience, we take the shear lag parameter G ¼ 129 which assures an almost perfect
bonding between the PZT patch and the member [31].

Three cases of damage corresponding to 40% reduction in Young’s modulus of members 1–4, 3–6 and 5–8
are considered. They are referred to as P1, P2 and P3, respectively, and are used to study the effect of damage
location on the EMI signature. It can be seen in Fig. 7 that the conductance (real part of the admittance)
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Table 2

Material constants and geometric parameters of PZT patch

Geometry (mm3) Ep (N/M2) Z rp (kg/m3) d31 (m/V) e33
T (F/m) d

15� 10� 0.34 6.67E+10 0.03 7800 �2.10E�10 2.14E�08 0.0185

W. Yan et al. / Journal of Sound and Vibration 307 (2007) 802–817 813
spectrum for P1 can hardly be distinguished from the pristine one. However, the spectra for P2 and P3 are
clearly different with P3 deviating significantly from the pristine one. The Cov shown in Fig. 8 predicts the
same trend. Both figures indicate that the electro-mechanical signature measured from a PZT patch bonded
onto a certain member is more sensitive to damages in the vicinity of the PZT patch which is in excellent
agreement as reported [34].

In order to illustrate the sensitivity of EMI signature to the local incipient damage, we consider three cases
of damage in 5-J segment with three severity degrees corresponding to 2%, 5% and 10% reduction in Young’s
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modulus (labeled as D ¼ 0.02, 0.05 and 0.10, respectively). Fig. 9 shows the shift of resonant peaks towards
the left with increasing damage severity due to reduction of global stiffness of host structure. Furthermore,
new peaks can be observed between the dominant resonant frequencies for the case D ¼ 0.10. These may
correspond to certain secondary modes excited at high-frequency due to local damage. Meanwhile, the
damage severity is also reflected clearly through Cov in Fig. 10.

To understand the effect of adhesive properties on the EMI signature, different shear lag parameters are
now assumed. The shear lag parameter in Fig. 11, which directly reflects the bonding condition, has a
significant effect on the conductance signature. Its effect even seems more significant than that of certain
damage as shown by comparing with the P3 curve in Fig. 11. When bonding becomes weaker (i.e., decrease in
shear lag parameter), the curve of conductance subsides down clearly. This agrees well with that observed by
Bhalla and Soh [32]. However, it is interesting to note that no peak shift of conductance curve occurs for
bonding imperfection in contrast with the obvious deviation of the P3 curve. This is mostly due to the fact that
bonding conditions of a small PZT patch do not change significantly the global stiffness of structure although
a coupled model is considered here. As a result, it can be concluded that even for significant changes EMI
signature no peak shift of resonant frequencies occurs and the host structures may still be intact.

6. Conclusions

A new coupled approach combining RMM and EMI technique is proposed in this paper to identify
analytically the local incipient damages in large framed structures. A shear lag model is adopted to depict the
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behavior of adhesives for considering the effect of interfacial conditions between PZT patches and the host
member. The PZT wafer excited by high-frequency alternating electric field is assumed in 1D motion. The
structural members are modeled as Timoshenko beams for flexural vibration and as classical longitudinal rods
for axial vibration. An analytical expression for electric admittance is derived to quantitatively detect damages
in a framed structure.

As predicted, the TBT is more appropriate to describe the high-frequency behavior of a beam as compared
to the EBT [37]. A comparison study of mechanical impedance of a portal frame also confirms a significant
difference between the two theories in high-frequency range. Comparison with TMM–JCM validates the
precision and effectiveness of the analysis here. Numerical examples also indicate that the quantitative
technique developed is able to correlate changes in signature to physical parameters of the host structure.
Further information on severity and location of damages can also be provided. As it seems difficult to identify
the severity and location of damages simultaneously and exactly by employing only a single PZT patch, an
optimum study of distribution of multiple PZT patches will be carried out to solve this problem. This is
however out of the scope of the current paper.

The effect of interfacial bonding behavior is also investigated. For imperfect bonding, the impedance
signature changes accordingly which is, however, quite different from the peak deviation of conductance
spectra induced by structural damages. This implies that even if a single PZT patch is imperfectly bonded onto
the host structure in practice, the EMI signature thus obtained may still be valid and valuable for damage
diagnosis through a proper analysis.

In summary, the new approach can be used to analyze dynamic response of a coupled model of PZT
patch–bonding layer–host frame system even in the high-frequency range. Theoretically, it also provides an
effective and convenient means to identify damage in the host structure. Although the analysis in this study is
restricted to a planar frame, its extension to space frames is rather straightforward. Hence, the present
approach is potentially a powerful tool for damage detection based on EMI.
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